An Analytic Center Cutting Plane Method for Semideenite Feasibility Problems
نویسندگان
چکیده
Semideenite feasibility problems arise in many areas of operations research. The abstract form of these problems can be described as nding a point in a nonempty bounded convex body ? in the cone of symmetric positive semideenite matrices. Assume that ? is deened by an oracle, which for any given m m symmetric positive semideenite matrix ^ Y either connrms that ^ Y 2 ? or returns a cut, i.e., a symmetric matrix A such that ? is in the half-space fY : A Y A ^ Y g: We study an analytic center cutting plane algorithm for this problem. At each iteration the algorithm computes an approximate analytic center of a working set deened by the cutting-plane system generated in the previous iterations. If this approximate analytic center is a solution, then the algorithm terminates; otherwise the new cutting plane returned by the oracle is added into the system. As the number of iterations increases, the working set shrinks and the algorithm eventually nds a solution of the problem. All iterates generated by the algorithm are positive deenite matrices. The algorithm has a worst case complexity of O (m 3 == 2) on the total number of cuts to be used, where is the maximum radius of a ball contained by ?.
منابع مشابه
The Analytic Center Cutting Plane Method with Semidefinite Cuts
We analyze an analytic center cutting plane algorithm for the convex feasibility problems with semideenite cuts. At each iteration the oracle returns a p-dimensional semideenite cut at an approximate analytic center of the set of localization. The set of localization, which contains the solution set, is a compact set consists of piecewise algebraic surfaces. We prove that the analytic center is...
متن کاملAn Analytic Center Cutting Plane Method
Semideenite feasibility problems arise in many areas of operations research. The abstract form of these problems can be described as nding a point in a nonempty bounded convex body ? in the cone of symmetric positive semideenite matrices. Assume that ? is deened by an oracle, which, for any given m m symmetric matrix ^ Y , either connrms that ^ Y 2 ? or returns a cut, i.e., a symmetric matrix A...
متن کاملHomogeneous Analytic Center Cutting Plane Methods for Convex Problems and Variational Inequalities
In this paper we consider a new analytic center cutting plane method in a projective space. We prove the eeciency estimates for the general scheme and show that these results can be used in the analysis of a feasibility problem, the variational inequality problem and the problem of constrained minimization. Our analysis is valid even for the problems whose solution belongs to the boundary of th...
متن کاملAn Analytic Center Cutting Plane Method for Semidefinite Feasibility Problems
Semidefinite feasibility problems arise in many areas of operations research. The abstract form of these problems can be described as finding a point in a nonempty bounded convex body Γ in the cone of symmetric positive semidefinite matrices. Assume that Γ is defined by an oracle, which for any given m ×m symmetric positive semidefinite matrix Ŷ either confirms that Ŷ ∈ Γ or returns a cut, i.e....
متن کاملAn Analytic Center Cutting Plane Method in Conic Programming
Conic programming has been lately one of the most dynamic area of the optimization field. Although a lot of attention was focused on designing and analyzing interior-point algorithms for solving optimization problems, the class of analytic center cutting plane methods was less investigated. These methods are designed to solve feasibility problems by finding points which are interior to differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007